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ABSTRACT

Band selection, by choosing a set of representative bands in
hyperspectral images (HSI), is concerned to be an effective
method to eliminate the “Hughes phenomenon”. In this pa-
per, we present a global optimal clustering-based band se-
lection (GOC) algorithm based on the hypothesis that all the
bands in a cluster are continuous at their wavelengths. After
the clustering result is obtained, we propose a greedy-based
method to select representative bands in each cluster, trying
to minimize the linear reconstruction error. Experiment on a
real HSI dataset shows that the proposed method outperforms
the state-of-the-art competitors.

Index Terms— Band selection, hyperspectral image, dy-
namic programming, global optimal.

1. INTRODUCTION

The rich band information in hyperspectral image (HSI) pro-
vides an opportunity in a wide range of applications. How-
ever, due to the large volume of data cube in hyperspectral
images, redundant bands lead to a huge computational com-
plexity as well as “Hughes phenomenon”. Band selection
method chooses some representative bands of HSIs to reduce
the dimension of datasets and effectively solves the aforemen-
tioned dilemma. In recent years, a large number of band se-
lection methods have been proposed. They can roughly be
divided into supervised and unsupervised method based on
whether training samples are used or not. Since the acquisi-
tion of labeled samples is a difficult task, sometimes super-
vised method is not very practical. In this paper, we mainly
focus on unsupervised method. According to [1], based on the
search strategy employed, unsupervised band selection can be
divided into ranking-based methods, clustering-based meth-
ods, greedy-based methods and evolutionary-based methods.
Ranking-based methods simply assign each band a rank val-
ue, and band with higher rank value is preferred to be select-
ed. Constrained band selection (CBS) [2] linearly constrains
each band and minimizes the interfering effects of remain-
ing bands to get a rank value. Considered to be a clustering-
based method, clustering-based band selection (CBBS) [3]

constructs a dissimilarity matrix via mutual-information or
Kullback-Leibler divergence, then Wards linkage method is
conducted to achieve a clustering result. In volume gradient
band selection (VGBS) [4], bands are treated to be points ly-
ing in high dimension space. VGBS attempts to choose a set
of points which maximize the volume of parallelotope they
constitute. It repeatedly removes the band that has the max-
imum gradient until the desired number of bands have been
acquired. Multi-task sparsity pursuit (MTSP) [5], viewed as
an evolutionary-based method, constructs an efficient search-
ing strategy for band combinations based on immune clonal
strategy (ICS).

In band selection problem, there are CK
L ways to select a

subset with K bands from a HSI with L bands. Thus find-
ing the global optimal solution is a difficult task. In our pa-
per, we propose a clustering-based method which can achieve
a global optimal clustering result. Based on the hypothesis
that all the bands in a cluster are continuous at their wave-
lengths, the clustering problem can be transferred to a band
separation problem. Specifically, it is to determine c− 1 sep-
arators which can separate the whole bands into c parts. In
this way, a global optimal clustering result can be obtained by
dynamic programming (DP). After the clustering result is ac-
quired, some bands are selected to minimize the reconstruct
error when utilize selected bands to construct the left bands
in this cluster. Two main contributions are claimed in this pa-
per. 1) Base on the hypothesis above, we propose a method
to obtain a global optimal clustering result by dynamic pro-
gramming. 2) We present a noise insensitive method to do
band selection among the clustering result and experiment on
a HSI image shows the superiority of our method.

2. GLOBAL OPTIMAL CLUSTERING VIA
DYNAMIC PROGRAMMING

2.1. INTRODUCTION TO DYNAMIC PROGRAM-
MING

Dynamic programming is an effective optimization method.
In dynamic programming, a complex problem is broken down
to a series of subproblems, and each subproblem is broken



down to simpler subproblems. This process is repeatedly con-
ducted until the subproblem is simple enough to solve direct-
ly. Then we constantly combine the subproblems to solve the
more complex problems and finally solve the original prob-
lem. A problem must have two attributes to be solved with dy-
namic programming, which is optimal substructure and over-
lapping subproblems attribute. Optimal substructure means
that the solution of a problem can be obtained by the combi-
nation of its subproblems. Overlapping subproblems is saying
that the solution of subproblems could be used many times, so
we can store the solution of each subproblem in memory to
avoid duplicated calculations.

2.2. PROBLEM DEFINITION

We use xl ∈ RN to denote the l-th band, and {xl}Ll=1

to denote the whole bands sorted by wavelength. s =
(s0, s1, ..., sC−1, sC)T , in which 0 = s0 < s1 < ... <
sC−1 < sC = L, denotes the separators. Due to s, the
whole band set is separated into C subsets: {xl}s1l=s0+1,
{xl}s2l=s1+1, ..., {xl}sCl=sC−1+1. Then we define Dinter

and Dintra as the function of the first c + 1 separators
s = (s0, s1, ..., sc−1, sc)

T :

Dinter(s = (s0, s1, ..., sc)
T )

=

c∑
i=0

si+1∑
j=si+1

‖M(si + 1, si+1)−M(1, L)‖2, (1)

Dintra(s = (s0, s1, ..., sc)
T )

=

c∑
i=0

si+1∑
j=si+1

‖xj −M(si + 1, si+1)‖2, (2)

in which,

c ≤ min(C, sc), sc ≤ L, (3)

M(i, j) =
1

j − i+ 1

j∑
k=i

xk. (4)

M(i, j) represent mean vectors of {xl}jl=i. Dinter(s =
(s0, s1, ..., sc)

T ) and Dintra(s = (s0, s1, ..., sc)
T ) can be

interpreted as inter-cluster distance and intra-cluster distance
in the first sc bands while clustering result is determined
by (s0, s1, ..., sc)

T . Our target is to solve an optimization
problem

max
s=(s0,s1,...,sC)T

Dinter(s)

Dintra(s)
, (5)

and find the corresponding s.

2.3. PROBLEM CONVERSION

[6] presents a similar optimization problem but they utilize
clone selection [7] to obtain a suboptimal solution. Here we

propose an improved method to achieve an optimal solution
via dynamic programming. In order to meet the suboptimal
attribute in dynamic programming, we first do some transfor-
mation to (5). We construct a function of λ:

g(λ) = max
s=(s0,s1,...,sC)T

Dinter(s)− λ ·Dintra(s). (6)

Suppose λ∗ is the solution of (5). It is obvious that g(λ∗) = 0
and g(λ) is a monotone decreasing function. This means λ∗

is the unique zero of g(λ), so dichotomy method can be uti-
lized to obtain λ∗. We first estimate a search interval of λ∗:
(left, right). By the calculation of g( left+right

2 ), we can
constantly half the search interval of λ∗ and finally obtain λ∗.
As a result, the problem to solve (5) converts to the calcula-
tion of g(λ).

2.4. OPTIMAL SUBSTRUCTURE

For the purpose to find the optimal substructure in (6), we
first define subproblems of calculating g(λ) as:

P (i, j) = max
s=(s0,s1,...,sj)T ,sj=i

Dinter(s)− λ ·Dintra(s)

(7)

for all i ≤ L, j ≤ min(i, C). Then the optimal substructure
of our problem is revealed as follow.
When j = 1:

P (i, 1) = Db(1, i)− λ ·Dw(1, i), (8)

and when j > 1:

P (i, j) = max
j−1≤k≤i−1

P (k, j − 1)

+Db(k + 1, i)− λ ·Dw(k + 1, i), (9)

in which,

Dw(i, j) =

j∑
k=i

‖xj −M(i, j)‖2, (10)

Db(i, j) =

j∑
k=i

‖M(i, j)−M(1, L)‖2. (11)

To explain with it, Db(i, j)− λ ·Dw(i, j) actually means the
contribution of {xl}jl=i. In (9), suppose the last cluster in the
first i bands is {xl}il=k+1, P (i, j) is actually the optimal sum
of two parts for each possible k, one indicates the contribu-
tion of the last cluster {xl}il=k+1 and another indicates the
solution of subproblem P (k, j − 1). Specially, P (L,C) is
the solution of the original problem λ∗. Moreover, in order to
find the corresponding s, we use F (i, j) to record the optimal
k in (9) for each P (i, j).



2.5. IMPLEMENTATION OF GOC

One thing to be noted is that, noises band do great contribu-
tion to Dw so they are easier to form a single-band cluster. In
order to deal with it, we limit the minimal size of each cluster
to 3. This only influences the limitation of k in equation (10)
from j − 1 ≤ k ≤ i − 1 to 3 · (j − 1) ≤ k ≤ i − 3. To sum
up the GOC algorithm, a pseudo code is given as follow.

Algorithm 1 The Global Optimal Clustering Algorithm
Input: All bands X = [x1,x2, ...,xL], cluster number C.

1: Yield A = [a1,a2, ...,aL], where al =
∑i

l=1 xl, so
M(i, j) can be represented by aj − ai−1 while a0 = 0.

2: Get Dw(i, j), Db(i, j) for each 1 ≤ i ≤ j ≤ L.
3: Set ε← e−8, left← 0, right← e8.
4: while |left− right| > ε do
5: λ← left+right

2 .
6: Get P (i, 1) for each i ≤ L according to (9).
7: Set each F (i, 1) to 0.
8: for j ← 2 to L do
9: for i← j to L do

10: Calculate P (i, j) through equation (10) and
find the optimal k.

11: F (i, j)← k.
12: end for
13: end for
14: if P (L,C) > ε then
15: left← λ.
16: else
17: right← λ.
18: end if
19: end while
20: Get s = (s0, s1, ..., sC) through F .
Output: C + 1 separators s = (s0, s1, ..., sC).

3. BAND SELECTION IN EACH CLUSTER BY A
GREEDY BASED METHOD

In this section, a greedy based band selection method is pro-
posed with the obtained C clusters in the previous. Suppose
Φj is set of current selected bands in cluster j with size |Φj |,
and Bj = [bj,1,bj,2, ...,bj,|Φj |] ∈ RN×|Φj | is the corre-
sponding matrix. We try to linearly construct the mean of
the unselected bands using the selected bands, and our greedy
strategy is to select the band which can reduce the linear re-
construction error in the maximum extent. In detail, we define
before-selected reconstruction error (E1) and after-selected
reconstruction error (E2) as follow:

E1(i) = (I − (BT
j Bj)

−1Bj)y (12)

E2(i) = (I − (B̃j

T
B̃j)
−1B̃j)y. (13)

Here i is the indicator of the examined band, and j denotes the
cluster to which xi belong. y is the mean of {xk}

sj
k=sj−1+1−

Φj − {xi}. B̃j = [bj,1,bj,2, ...,bj,C ,xi] consists of Bj and
xi. In the proposed method, the band i which can maximize
the value of E1(i)

E2(i) is selected in each iteration until the desired
band number is obtained. To make sure that there is at least
one selected band in each cluster, we first select one band in
each cluster which has the shortest distance to the mean of the
remaining bands.

4. EXPERIMENT

4.1. EXPERIMENT SETUP AND PARAMETER SET-
TING

To evaluate the performance of GOC algorithm, we conduc-
t our experiments on Indian Pines. Indian Pines image, as
a widely used HSIs, was captured by AVIRIS. It consists of
145 × 145 pixels and 224 spectral reflectance bands. There
are 16 classes of objects included in the image. In gener-
al, the water absorbtion bands are removed and a total 200
bands are utilized in our experiment. To do comparisons,
several representative band selection methods are involved
as benchmarks: clustering-based band selection with mutu-
al information(CBBS-MI) and Kullback-Leibler (CBBS-KL)
[3], VGBS [4], uniform band selection (UBS) [8], and MT-
SP [5]. In order to evaluate the classification accuracy of
different band selection method, four popular classifiers are
used to test the classification accuracy: support vector ma-
chine (SVM), k-nearest neighborhood (KNN), linear discrim-
inant analysis (LDA) and classification and regression trees
(CART). In our experiment, 5% of samples for each classes
are chosen randomly to be training samples, and the rest are
used in the testing. To reduce the randomness caused by train-
ing samples, the final result is calculated by the mean of 10
individual runs.

In the proposed algorithm, the only parameter to be de-
termined is the number of clusters C and the selected bands
number K. K controls the number of bands to be selected.
For each classifier, we set K every five intervals from 5 to 80.
We attempt to set C = bα ·Kc, but C is forced to be small-
er than bL3 c because of the minimal limitation of cluster size.
Considering these two factors, C is determined by:

C = min(bα ·Kc, bβ · L
3
c). (14)

Here α and β are simply set to 0.8.

4.2. EXPERIMENT RESULT

Fig. 1 shows the classification accuracy by SVM verses the
number of selected bands in Indian Pines image. The clas-
sification accuracy with total bands are plotted as base line.
As can be clearly seen in Fig. 1, the proposed GOC method



outperforms the other methods in most of the cases. UBS
take the second place owe to the small correlation between
its selected bands. MTSP method follows the UBS method
but we can see the unstability of MTSP in the cause of the
uncertainty of evolution strategy. VGBS and CBBS method
do not perform well in Indian Pines image. This is because
they are too sensitive to the noisy bands. In VGBS, the band
that has the maximum gradient is the most redundant, but the
noisy bands usually have smaller gradients and are easier to
be selected. In CBBS, noisy bands have larger dissimilarity
with other bands and they tend to form single-band cluster-
s. So these two algorithms are more sensitive to the noisy
bands. Table 1 displays the accuracy results through four dif-
ferent classifiers. The highest accuracy among four classifiers
proved the superiority of our method. In summary, our GOC
method obtains a global optimal clustering result and reduces
the risk to select noisy bands at the same time, which has sig-
nificance both in theory and practice.
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Fig. 1. The SVM classification accuracy of different methods
versus the number of selected bands in Indian Pines image.

Table 1. Classification average accuracy results of Indian
Pines through four different classifiers

Classifiers SVM KNN LDA CART Average

CBBS-KL 0.6614 0.6192 0.6338 0.5648 0.6198
CBBS-MI 0.5761 0.6367 0.5795 0.5432 0.5839

VGBS 0.6703 0.6206 0.5635 0.5581 0.6031
UBS 0.6938 0.6211 0.6688 0.5762 0.6400

MTSP 0.6802 0.6342 0.6636 0.5735 0.6379
GOC 0.7080 0.6531 0.6746 0.5799 0.6539

5. CONCLUSION

In this paper, we present an algorithm utilizing dynamic pro-
gramming to achieve a global optimal clustering result, and a

noise-insensitive greedy-based band selection method is then
designed to get a selected band set. Experiment on Indian
Pines in classification accuracy shows that our method outper-
forms the other methods representing state-of-the-art among
four different classifiers. In future work, we will try to find
more effective criterions that can be optimized globally via
dynamic programming and do comparisons with more band
selection algorithms.
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